AS5452

NIGHT VISION GOGGLES (NVG) COMPATIBLE LIGHTING FOR CIVIL AIRCRAFT

Foreword— The purpose of this document is to provide a standard to which civil aircraft can be designed, modified, qualified and certified to be operated by specially trained pilots using approved night vision goggles (NVG's). This will allow the operators to conduct essential night operations utilizing approved NVG's with minimal degradation of the night vision image caused by the spectrum of the crew station and exterior lighting of their aircraft overlapping the spectral response of the night vision goggles. At the same time the modified aircraft will maintain a visible presence for other aircraft that are being operated by pilots who are not using night vision devices flying in the same vicinity. Safety of flight is the primary concern while conducting flight operations utilizing night vision goggles. Night vision goggles replace normal color vision with a monochromatic image and have a narrower field of view than normal vision. Training must minimize the effect of these limitations. This standard makes no affirmations, positive or negative, about the operational safety of aircraft being operated by pilots using night vision goggles. Operational issues and safety are the responsibility of the certifying organization. Operational approval must be obtained from the Standards District Office of the certifying organization.

1. Scope

1.1 This standard will specify what type night vision goggles are required, minimum requirements for compatible crew station lighting, aircraft exterior lighting such as anticollision lights and position/navigation lights that are "NVG Compatible." Also, this document is intended to set standards for NVG utilization for aircraft so that special use aircraft such as the Coast Guard, Border Patrol, Air Rescue, Police Dept., Medivacs, etc., will be better equipped to chase drug smugglers and catch illegal immigrants, rescue people in distress, reduce high-speed chases through city streets by police, etc. Test programs and pilot operator programs are required.

2. References

2.1 Applicable Documents— The following publications form a part of this specification to the extent specified herein.

U.S. Navy Air Development Center document NAVAIRDEVCEN Code 5013, dated 14 March 1988

Code of Federal Regulations (CFR), Parts 23/25/27 and 29 Federal Aviation Administration, 800 Independence Avenue, Washington, D.C.

SAE ARP 4392, Lighting, Aircraft Exterior, Night Vision Imaging System (NVIS) Compatible

SAE AS 8017, Minimum Performance Standard for Anticollision Light Systems

SAE AS 8037, Minimum Performance Standard for Aircraft Position Lights

MIL-A-49425, GEN III NVG's

MIL-PRF-49425, GEN III NVG's

AN/AVS-9(V), NVIS-9 Performance Specification

ASC EN 981, Lighting, Aircraft Interior Night Vision Imaging System (NVIS) Compatible

MIL-L-85762A, Lighting, Aircraft Interior Night Vision Imaging System

AL/HR-TR-1995-0167 Procedure for Conducting A Field Evaluation of Night Vision Goggle
Compatible Cockpit Lighting, Armstrong Laboratory - U.S.
Air Force Material Command, Brooks Air Force Base,
Texas

Aerospace Lighting Institute Book "Principles of Display Illumination Techniques for Aerospace Vehicle Crew Stations", Author Geo. W. Godfrey

Optical Specification for F-16 Left and Right-Hand Inlet Position Lights, Document No. 01/QS/3397 and Optical Specification for F-16 Tail Position Light Document No. 01/QS/3405. Oxley, Inc., Cumbria, England

Introduction to Radiometry and Photometry - Author, Ross McCluney ISBN 9-89006-678-7 1994, Artech House, Inc.

Handbook of Applied Photometry - Editor Casimer Decusatis ISBN 1-56396-416-3, Sponsored by the Optical Society of America, 1997 American Institute of Physics Press

2.2 Definitions/Abbreviations

- 2.2.1 **NVG Friendly Exterior Lighting**: NVG Friendly Exterior Lighting in exterior lighting, which shall not degrade the performance of the goggles.
- 2.2.2 **NVG Compatible Interior Lighting**: NVG Compatible Interior Lighting is lighting which meets the requirements of MIL-L-85762A and ASC EN 981 for Type I Class B
- 2.2.3 **ABC**: Automatic Brilliance Control
- 2.2.4 **CFR**: Code of Federal Regulations, Federal Aviation Administration
- 2.2.5 **FAA**: Federal Aviation Administration
- 2.2.6 **FOV**: Field of View

2.2.7 **GEN III NVG's**: Generation III Night Vision Goggles

2.2.8 NAS: National Airspace

2.2.9 **NAVAIRDEVCEN**: Naval Air Development Center

2.2.10 NR: NVIS Radiance

2.2.11 **NVIS**: Night Vision Imaging Systems

2.2.12 **NVG**: Night Vision Goggles

2.2.13 VA: Visual Acuity

3. General Requirements

3.1 Night Vision Goggles — Night Vision Goggles (NVGs) have been utilized in military aircraft since about 1980. By allowing pilots to fly night-time missions, the NVGs amplify ambient illumination and produce a highly intensified monochromatic, near day like presentation of the night-time scene. In order to quantify the interaction between the NVG and a particular light source, it is necessary to know that the spectral characteristics of Generation III (GEN III) NVGs have a spectral response which is greatest in the near infrared; however, this system also has a considerable sensitivity in the visible region.

3.1.1 NVGs provide an intensified image of scenes illuminated by ambient light in the red and near infrared part of the electromagnetic spectrum which exist in the night environment. The intensified imagery is on average at least 2,000 times brighter than the original scene. In order to quantify the interaction between the NVG and a particular light source, it is necessary to know the spectral characteristics of both. GEN III NVGs have a spectral response which is greatest in the near IR;however, these systems also have considerable sensitivity in the visible region (Figure 1).

FIGURE 1— SPECTRAL RESPONSE

- 3.1.2 NVGs employ an automatic brilliance control (ABC) feature which acts to maintain a constant image brightness by decreasing the intensifier gain in response to input light levels exceeding a defined threshold. Proximate lights emitting energy within the range of the spectral response of the NVG are considered incompatible if they activate the ABC, thereby decreasing intensifier gain. With decreased gain, there is a corresponding decrease in image contrast and a loss in NVG-aided visual acuity (VA).
- 3.1.3 Incompatible light can severely degrade NVG-aided VA if the source is within the field of view (FOV) of the NVG. Incompatible light sources outside the FOV also can degrade NVG-aided VA if enough light is captured and internally reflected by the glass elements of the NVG objective lens structure to cause veiling glare. If the veiling glare is severe, it will activate the ABC and decrease image contrast. Even if the veiling glare is not severe, some contrast loss still may occur. Veiling glare generally is caused by incompatible light reflected by cockpit instruments, canopy, or windscreen.

3.1.4 To achieve compatibility and avoid losses in NVG-aided VA due to ABC, cockpit and exterior lighting should have a spectral distribution containing little or no overlap with the spectral response of the NVG. (For

a more detailed explanation see "Principles of Display Illumination Techniques for Aerospace Vehicle Crew Stations.")

- 3.1.5 NVGs must be affixed in front of the pilot's eyes by attachment to a helmet or head mounted support unit so that both hands are free to operate flight controls. Attachment of the NVGs to the helmet will be accomplished in a manner that meets the requirements of AN/AVS-9(V), NVIS-9 Performance Specification. It is critical that the attachment geometry meets the requirements of this specification so that the NVGs can be adjusted to the maximum field of view.
- 3.1.6 The night vision goggles (NVG's) necessary to meet the requirements of this SAE standard will as a minimum be GEN III goggles, Type 1, Class B, and must be approved by the FAA at the time the NVG compatible lighting aircraft is certified.
- <u>3.2 Crew Station Lighting</u> Pilots of aircraft conducting night-time operations utilizing NVG need reduced levels of Night Vision Imaging System (NVIS) Radiance (NR) in order to keep their NVG's from "blooming" which would effectively shut down operation of the goggles.
- 3.2.1 The crew station lighting in a conventionally lighted civil aircraft must be extensively modified to be NVG compatible. All displays, instruments, indicators, warning caution lights, etc., deemed necessary for safe flight operation must be made compatible with MIL-L-85762A and ASC EN 981 specification requirements, except for the daylight readability requirements (see 3.2.2). This can be accomplished by changing out the unit, putting a filter over it, replacing the cap, etc., but it is imperative that it be NVG compatible. Degradation in outside visual acuity due to exterior or interior cockpit lighting is not allowed. Green light or a green filter does not necessarily mean the lighting in the crew station is NVG compatible. Light must be properly emitted or filtered to exclude wavelengths in the effective range of the NVGs. Filters and color uniformity may give NVG compatibility, but intensity balance is also a very important factor. Unfiltered light leaks cannot be tolerated, since a cockpit with light leaks does not meet the reference specification. The NVG are so sensitive that unfiltered light in the cockpit of extremely small quantities can saturate or bloom the goggles.
- 3.2.2 Converting the civil aircraft crew station from conventional lighting to NVG compatible lighting should not degrade daylight readability or night-time readability when NVGs are not used. Filter use intended to make crew station lighting NVG compatible often results in reduced display contrast and reduced attusity (the ability to attract attention) during daytime. Daylight readability should be assessed utilizing simulated or actual sunlight.
- 3.2.3 Another aspect of crew station lighting is the use of auxiliary lights or flashlights for map reading, flood lighting or other applications. Lights used in these applications need to be filtered in order to be compatible with NVG. Recommendations for the color and NVG compatibility of NVIS White filters is contained in a U.S. Navy Air Development Center document (NAVAIRDEVCEN Code 5013) dated 14 March 1988. Using a 2100 K source, the u' and v' chromaticity coordinates should lie within a circular boundary defined by a center point u' = 0.180, v' = 0.500 and a radius of 4 = 0.055. The NVIS Radiance (Class A) should not exceed 1×10^{-9} at a luminance of 0.1 fL, and the filter should have a minimum photopic transmission of 10%.

- <u>3.3 Aircraft Exterior Light Systems</u> Civil aircraft, both fixed wing and helicopters, have many different configurations. Consequently, the position/navigation light system and the anticollision light system have light emitting fixtures installed in many locations on the exterior of the aircraft. The Federal Aviation Administration (FAA) that is responsible for aircraft that fly in the National Airspace (NAS) specifies that each of these systems emit a specific color of light in a specific pattern around the aircraft for the purpose of easy recognition of its location and direction of flight by other aircraft. This is required so that all aircraft can operate in the same airspace with safety.
- 3.3.1 Therefore, when a civil aircraft is modified so that it can be certified to fly with night vision goggles, it must be ascertained that the exterior lights are NVG compatible. If any of the position/navigation lights or anticollision lights reflect in any way into the crew station, this will cause the NVG's to bloom, creating an unsafe condition. This condition, if it exists, must be remedied. Options for correcting this condition include relocating the light fixture, or by baffles, or by lens/covers with IR filter coatings that prevent the light emission from the offending light from reaching the crew station. NVG Friendly lights are not presently approved by the FAA. Each type aircraft must be evaluated, and any modifications necessary must be made to correct this unsatisfactory condition. (See ARP 4392 for general information on NVG Aircraft Exterior Lighting.)
- 3.4 Aircraft Exterior Position/Navigation Lighting System. The position/navigation light system must comply with Code of Federal Regulations (CFR) Part 23/25/27/29.1387 thru 23/25/27/29.1397. The chromaticities of the light emitted, after NVG compatability, must meet the requirements of the applicable CFR. When the aircraft was originally certified by the FAA it met these chromaticity requirements. Reference SAE AS 8037, Minimum Performance Standard for Aircraft Position Lights.

The optical specification for NVIS compatible exterior navigation/position lighting should consist of 4 distinct areas of reference. They include signal color (per CFR requirements), min/max visible intensity (per CFR requirements), min/max NVIS Radiant Intensity (NRI), and min/max NVIS radiance. Except for color, these areas should have distinct maximum and minimum requirements defined per angularity of the signal's distribution. This would characterize the complete energy distribution of the signal, and provides a baseline of compliance that ensures compatibility within the night vision user community.

The following graph shows the spectral irradiance of a typical red position light, and the necessary blocking required to make the signal more compatible with NVG equipment. It is provided as a reference to describe the type of spectral blocking that is required to make the signal usable with night vision goggles. The spectral blocking should be chosen such that there is a minimum impact on the visible content of the signal without reducing it below the minimum FAR requirements, but deep enough through the near IR wavelengths to minimize goggle "blooming". This blocking can be represented using "NRI" calculated integrals as well as NVIS radiance, a measure of the reflected spectral content of the signal at some distance from the light. This value then can be used to determine the amount of reflected IR energy that would be present if it strikes surrounding aircraft structures and is reflected back into the cockpit. "NRI" values can be used to determine the amount of direct light and it's effect on the goggles when directly viewed by the pilot or others wearing goggles.

- 3.5 Anticollision Light System. The anticollision light system must meet the requirements of Federal Aviation Administration Code of Federal Regulations (CFR) Part 23/25/27/29. This paragraph specifically states "The anticollison lights will be located on the aircraft so that their light will not impair the crew's vision." Further, the CFR states, "The color shall be Aviation Red or Aviation White."
- 3.5.1 The anticollision light system shall meet or exceed the minimum effective intensity of applicable values of C.F.R Part 23/25/27/29. Also reference SAE AS 8017, Minimum Performance Standard for Anticollision Light Systems.

3.6 Testing

- 3.6.1 Testing Aircraft Lighting It is necessary to perform an evaluation of the aircraft lighting that has been modified for NVG flying. Planning this evaluation is critical to ensure a thorough evaluation of the crew station lighting as well as the aircraft's exterior lighting. Since most facilities cannot be sufficiently darkened during daytime to obtain appropriate ambient light levels for the evaluation, most evaluations are performed during night-time. The Armstrong Laboratory procedure AL/HR-TR-1995-0167 for conducting a field evaluation of night vision goggle compatible lighting should be utilized. Also reference Introduction to Radiometry and Photometry and Handbook of Applied Photometry.
- <u>3.6.2 Testing of NVG's</u> Field testing of NVG equipment is a must. Field maintenance of the NVG equipment must be accomplished routinely in order to keep the equipment in top condition, which promotes safety as well as assure completion of the flight. Such things as tube gain, resolution, collimation errors, NVG current draws, battery pack voltage and optical test capabilities are some of the routine field maintenance checks that must be made. Another important feature is the ability to measure gain as an absolute value. The operator of NVG flight operation in civil aircraft should set up a night vision device support and maintenance program, and obtain the required equipment for this maintenance program.

3.7 Maintenance

<u>3.7.1 NVG Aircraft Lighting</u> — Maintenance instructions must be prepared to insure that the interior and exterior lighting will continue to meet an acceptable level of performance. These instructions should address at least the following: cracking, crazing or light leakage; changes in lens transmissivity; color shifts that could effect the NVG compatibility; cleaning of the lighting, element/lamp failure, etc.

3.8 Training

3.8.1 A training program is essential to an operator who intends to utilize night vision goggles with civil aircraft. The training program should familiarize the user with the characteristics and limitations of NVG's. This should also include preflight and proper adjustment procedures. Safety is paramount.

Prepared by SAE Committee A20, Aircraft Lighting Task Group